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Abstract. Effective development of nontrivial systems of collaborative
information agents requires that an in-depth analysis is made resulting in (1)
specification of requirements at different levels of the system, (2) specification
of design structures, and (3) a systematic verification. To support a widespread
use of intelligent information agents for the Internet, the challenges are (1) to
identify and classify a variety of instances of the different types of reusable
(requirement, design and proof) patterns, (2) build libraries of them, and (3)
provide corresponding easy-to-use plug-in information agent components to the
common user. In a simplified example it is shown which types of reusable
requirements patterns, design patterns, and proof patterns can be exploited, and
how these patterns relate to each other.

1  Introduction

The domain of collaborative information agents (cf. [27]) imposes specific
requirements on the functionality and behaviour of the agents and their interaction.
Various applications have been developed and are being developed; e.g., [7], [8],
[24], [25], [26], [31], [33]. Usually it is required that the information agents cooperate
with each other and the users in a coordinated manner. Although, especially for the
simpler applications, it is tempting to just focus on the programming of these agents,
for more sophisticated information agent applications it is essential to design them on
a higher conceptual level. A principled design process not only involves conceptual
design specifications but also requirements specifications (e.g., [11], [28], [32]) and
verification e.g., [30]).

In the first place, in order to develop a system with appropriate properties, such a
design process includes the analysis of requirements on the functionality or behaviour
of the overall (multi-agent) system consisting of the information agents. Moreover,
requirements (to be) imposed on the individual information agents and the
relationship of these requirements to dynamic properties of the overall (multi-agent)
system are important. Requirements can be specified in a conceptual and precise
manner. In addition or instead of direct requirement formulations, often scenario’s
are used as a means to specify required behaviour.
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During further design, in relation to these requirements design structures are used
which are specified in a conceptual and precise manner. Both requirements and
design structures can take the form of reusable patterns, which are maintained in a
library.

A verification process, after a system has been designed can demonstrate that the
designed system actually will show the required behaviour. In verification formalised
behavioural requirements and a formalised conceptual design play a main role. Also
for verification proofs reusable patterns can be specified.

The methodological approach discussed in this paper assumes two specification
languages: a language to specify (behavioural) requirements and scenarios for
(systems of) information agents, and a language to specify design descriptions. Each
of these languages fulfills its own purpose. A language to specify a (multi-agent)
system architecture needs features different from a language to express properties of
such a system. Therefore, in principle the two languages are different. The distinction
between these specification languages follows the distinction made in the AI and
Design community (cf. [20]) between the structure of a design object on the one
hand, and function or behaviour on the other hand. For both languages informal,
semi-formal and formal variants are assumed, to facilitate the step from informal to
formal. Formal models specified in the two languages can be related in a formal
manner: it is formally defined when a design description satisfies a requirement or
scenario specification, and this formal relation is used to verify that the design
description fulfills the requirements and scenarios.

Reusability can be supported for all of the above aspects. Reusable requirement
and scenario patterns can be used to identify and classify the type of properties
required for the overall system and for each of the information agents. Reusable
design patterns can be used to identify and classify a system design description.
Reusable verification proof structures can be used to establish, for example, that a
design description indeed fulfills certain requirements

For reasons of presentation we will use a simple example domain for illustration:
the design of an information agent which collaborates with multiple information
providers to keep its human users informed about information available on the Web
within their scope of interests, both with (pull) or without (push) explicit requests
from the user. Representations of requirements and scenarios for this example domain
are discussed in section 2. In section 3 design structures are discussed. Verification is
the topic of section 4 while section 5 concludes with a brief discussion.

2  Specification of Requirements and Scenarios

In Requirements Engineering (cf. [11], [13], [14], [15], [22], [28], [29], [32]) the role
of scenarios, in addition to requirements, has gained more importance; e.g., see [17],
[34]. Traditionally, scenarios or use cases are examples of interaction patterns
between the users and a system; they are often used during the requirement
elicitation, being regarded as effective ways of communicating with the stakeholders
(i.e., domain experts, users, system customers, managers, and developers). In the
specific case of designing collaborative information agents, requirements and
scenarios of the following types can be specified:
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• for a multi-agent system as a whole with respect to users and environment,
abstracting from the specific agents in the system

• for the interaction patterns between specific (groups of) agents within the system,
and

• for individual agents within the system.

During a development process, starting from behavioural requirements and given
scenarios for the system as a whole (with respect to users and environment) we can
identify requirements for interaction patterns and behavioural properties of the agents
themselves by requirement refinement. This leads to the identification of agents
within the system, and their properties. Such an approach actually makes part of the
heuristics of the design process explicit (e.g., the design choice for which agents to
distinguish, and with which properties). One of the underlying assumptions is that
such a design method will lead to designs that are more transparent, better
maintainable, and can be (partially) reused more easily within other designs.

Different representations can be used to express the same requirement or scenario,
varying from informal to formal. Representations can be made, for example, in a
graphical representation language, or a natural language, or in combinations of these
languages, as is done in UML’s use cases (cf. [18], [21]). Scenarios, for instance, can
be represented using a format that supports branching points in the process, or in a
language that only takes linear structures into account.

user environmentsystem

Fig. 1.  Overall system requirement

2.1  Requirements for the overall system

At the most abstract level we can specify the requirements on the behaviour of a
system with respect to a user abstracting from the form (architecture) the system has
or will get. Because system behaviour may depend on its further environment, often
also a reference to this environment is made. These overall system requirements are
expressed as temporal relationships in terms of user output and input and
environment output and input at certain points in time, and make no reference to
system structures; see Fig. 1. As an example, the following requirement for the
overall system is shown.

Example 1: System requirement pattern
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if at any point in time the environment generates output ... to the system
and earlier the user generated output ... to the system,
then some time later the user will receive input ... from the system

•

In the context of our example domain we can state the following informal system
requirements and a related scenario for the overall system with respect to users and
the environment. The first of these requirements expresses pull behaviour of the
system, and the second push behaviour.

Example 2:  Informal requirement and scenario

1. Global system requirements

GR1 informal:
 If    the user requests information for a scope of interest and at the WWW information

within that scope is available,
  then this information is offered to the user.
 
 GR2 informal:
 The user is kept informed of new information on the World Wide Web which is within
 the user’s scope of interest.
 
2. Global scenario (GS1 informal):

• The user generates a scope of interest
• The user is waiting
• New information within the user’s scope of interest becomes available on the

World Wide Web
• The user receives results for his/her scope of interest

•

Requirements and scenarios can be reformulated to more structured and precise
forms. During such an analysis process the relevant concepts (domain ontology) can
be identified and how they relate to input or output, for example of agents, or, as in
this case to input and output of user and environment. For nontrivial behavioural
requirements a temporal structure has to be reflected in the representation. This
entails that terms such as ‘at any point in time’, ‘at an earlier point in time’, ‘after’,
‘before’, ‘since’, ‘until’, and ‘next’ are used to clarify the temporal relationships
between different fragments in the requirement. An example of a structured semi-
formal reformulation of the informally specified overall system requirement GR2
given above is as follows.

Example 3: Structured semi-formal system requirement
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Global system requirement (GR2 semi-formal):

At any point in time,
if     at an earlier point in time
user output : a scope of interest, and
     since then
not  user output : retraction of this scope of interest, and
     just now
World Wide Web output:  new information within this scope
then just after now
user input: new information within this scope

•

The scenario GS1 can be formalized by utilizing ontological concepts (input and
output) and sequence of events as a temporal trace as part of a formal temporal
model. Regarding the formalization of requirement GR1 the following (sorted first
order logic) formal ontology elements can be used.

Example 4: Ontological elements and relations

ontology element: explanation:

SCOPE a sort for the scopes of users’ interests

USER a sort for the names of different users

INFO_ELEMENT a sort for the information delivered by the agent

result_for_scope a binary relation on INFO_ELEMENT and SCOPE

input:

is_interested_in a binary relation on USER,and SCOPE

output:

result_for_user a ternary relation on INFO_ELEMENT, USER and SCOPE

•

In addition, the temporal structure has to be expressed in a formal manner. For to
obtain a more sophisticated formalisation of requirements of the domain we can use
different variants of temporal logic (cf. [1]) depending on the type of properties to be
expressed. For example, linear or branching time temporal logic are appropriate to
specify various agent (system) behavioural properties. Examples of formal
requirement specification languages based on such variants of temporal logic are
described in [9], [10], [13], [14], [15], [16], [19], [30]. However, for information
agents, it might be necessary to specify adaptive properties such as ‘exercise
improves skill’ for which we have to explicitly express a comparison between
different histories. This requires a form of temporal logic language which is more
expressive than those allowing to model at each time point only one history.  An
example of such a more expressive formal language in which different histories can
be compared was introduced in [23]; it is defined as follows.
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Definition 1: Temporal Requirement Language TRL

The semantics of  TRL are based on compositional information states which evolve
over time.

1. An information state I of a (part of a) system S (e.g., the overall system, or an
input or output interface of an agent) is an assignment of truth values {true, false,

unknown} to the set of ground atoms describing the information within S.
2.  The set of all possible information states of  S is denoted by  IS(S).
3. A trace IT of  S is a sequence of information states (It)t∈N in IS(S). Given a trace

IT of  S, the information state of the input interface of an agent A at time point t is
denoted by stateS(IT, t, input(A)). Analogously, stateS(IT, t, output(A)), denotes the
information state of the output interface of agent A at time point t within system
S.

4. The information states can be related to statements via the formally defined
satisfaction relation |=, comparable to the Holds-predicate in the situation
calculus. Behavioural properties can be formulated in a formal manner, using
quantifiers over time and the usual logical connectives such as not, &, ⇒.

•

The requirement and scenario informally described above in Example 2 can formally
be specified in TRL as given in the following example.

Example 5:  Formal requirement and scenario

Global system requirements

GR1 formal:
∀ IT, t

[  stateS( IT, t, output(U)) |=  is_interested_in(U:USER, S:SCOPE)     &

    stateS(IT , t, output(Web)) |=  result_for_scope(I:INFO_ELEMENT, S:SCOPE)   ]
⇒   ∃t’ > t:

   stateS(M , t’, input(U)) |=  result_for_user(I:INFO_ELEMENT, U:USER,S:SCOPE)

GR2 formal:
∀IT, t1, t2>t1

   stateS(IT, t1, output(U)) |=  is_interested_in(U:USER,  S:SCOPE)     &

   stateS(IT, t2, output(Web)) |=  result_for_scope(I:INFO_ELEMENT, S:SCOPE)       &
   ∀t’   [ t1 < t’ < t2       ⇒
   [  not  stateS(IT, t’, output(Web)) |=  result_for_scope(I:INFO_ELEMENT, S:SCOPE)        &

      not  stateS(IT, t’, output(U)) |=  not   is_interested_in(U:USER,  S:SCOPE)  ]
⇒ ∃t3 > t2

   stateS(IT , t3, input(U)) |=  result_for_user(I:INFO_ELEMENT, U:USER, S:SCOPE)]

Global scenario (GS1 formal):
  stateS (IT, 1, output(U)) |=  is_interested_in(U:USER, S:SCOPE)
  stateS (IT, 3, output(Web)) |=  result_for_scope(I:INFO_ELEMENT,  S:SCOPE)
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  stateS (IT, 4, input(U))                  |=  result_for_user(I:INFO_ELEMENT, U:USER, S:SCOPE)
•

GR1 addresses the case that information relating to a scope is already present (pull),
whereas GR2 addresses the case that the information becomes available later (push).
Note that in contrast to situation calculus, an infix notation is used for the |=-predicate
and an explicit reference is made to a trace. This allows for specification of adaptive
properties by comparison of different histories.
The formal scenario representation (GS1 formal) relates to the second formal
requirement representation expressed above. Note that at time point 2 nothing
happens, which corresponds to the waiting of the user, of course in another (but
similar) scenario the waiting could take more time.
So far the requirements and scenarios have been formulated for the system as a whole
with respect to the users and the Web considered as the given environment.  They
express the desired behaviour from a global perspective, and only refer to input and
output of users and the environment. Otherwise no assumptions were made on the
design of the multi-agent system; in particular, no specific agents were assumed.
However, one can identify more elementary units of behaviour by refining these
requirements and scenarios (behavioural refinement); of course, which units of
behaviour are chosen is a specific design decision.

user PA IP env

IR1 IR4IR2

AR1 ER1AR3

TR(user, PA) TR(PA, IP) TR(IP, env)

Fig. 2.  Refinement of overall system requirements into interaction (IR), transfer (TR),
  agent (AR), and environment (ER) requirements.

In relation with the refinements for our example domain the design decision is made
to identify at least two types of agents:
• Personal Assistant agents, that are in direct contact with users, and
• Information Provider agents, that only handle unpersonalized needs for

information and are in contact with (parts of) the environment, i.e., the Web.

Fig. 2 summarizes the different types of requirements between the user, personal
assistant agent (PA), information provider agents (IP), and the Web considered as to
be the environment. Each of these types is discussed informally in subsequent
sections.
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2.2  Requirements for interaction patterns

The interaction between units of behaviour can be specified in terms of temporal
relationships between their output. A typical example interaction pattern between two
agents A and B is as follows.

Example 6: Agent interaction pattern
At any point in time
if A generates as output ....

[and in the past at the output of A it was generated ...
and in the past at the output of B it was generated ... ]

then  some time later B generates as output ....
•

This example can be generalised to interaction between an arbitrary number of
agents. As an illustration, in the following examples the requirements for the
interactions between the different agents of our example domain are discussed (see
also fig.2).

2.2.1  Interaction between user and Personal Assistant

For our example, it can be postulated that on the basis of specific user outputs
concerning their interest, an unpersonalized scope of interest is identified by the
Personal Assistant agent (PA): interaction requirement IR2 below. Interaction
requirement IR1 describes an interaction between three agents: user, PA and IP. It
expresses that if the user puts forward a request scope, and earlier an IP has generated
information for the PA within this scope, then this will be generated for the user.

Example 7: Interaction requirement between user and PA

User-PA interaction requirements
(IR1 informal):
At any point in time

if a user has generated on its output a personal scope of interest,
and  earlier an Information Provider generated as output for the Personal
Assistant information within that scope which was not retracted in the meantime
then  the Personal Assistant will generate this information  on its output for the
user

(IR2 informal):
At any point in time
a. if a user has generated on its output a personal scope of interest,

then  the Personal Assistant will generate on its output an unpersonal scope
based on this scope for a set of Information Providers

b. if a user has generated on its output a personal interest scope retraction,
    and no other users have generated the same scope without having it retracted,
then the Personal Assistant will generate on its output an unpersonal scope

retraction based on this scope.
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•

Note that by IR1 & IR2 new ontology elements are created that need not to be part of
the ontologies of a user or system environment input or output (and are also not
meant to be part of these ontologies).

2.2.2  Interaction between Personal Assistant and Information Provider

The requirements IR1 and IR2 are imposed on the interaction between users and
personal assistants whereas the following requirements are valid for any interaction
between assistant and provider agents. For example, the requirement IR4 expresses
that a personal assistant will receive information within a specified scope from a
provider agent as soon as it is available.

Example 8: Interaction requiremenst between assistant and provider  agent

Interaction requirement (IR3 informal)
At any point in time
if a Personal Assistant has generated on its output an unpersonal scope for a set

of Information Providers
 then every Information Provider from this set generates a related scope for its

environment

Interaction requirement (IR4 informal)
At any point in time

if an Information Provider generated on its output new information for a
Personal Assistant, and the new information matches an unretracted  scope
that the Personal Assistant received earlier on its input from a user,

then  this Personal Assistant will generate the new information on its output for
this user.

•

2.2.3  Interaction between information provider and environment

The following requirements specify the required interaction requirement pattern
between information provider agents and the environment:

Example 9: Interaction requirement between information provider and
environment

Interaction requirement (IR5 informal):
At any point in time
if an Information Provider has generated a scope on its output for its environment

and later information becomes newly available in its environment that matches
this scope,

 and this scope was not retracted before the new information became available,
then the environment will generate this information as output for the information

Provider
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Interaction requirement (IR6 informal):
At any point in time
if the environment of an Information Provider generates on its output new

information,
and the new information matches an unretracted unpersonal scope that the
Information Provider received earlier on its input from a Personal Assistant,

then this Information Provider will generate the new information at its output for
the Personal Assistant.

•

2.3 Transfer requirements

Any successful collaboration in our domain requires a secure, reliable transfer of
information between different components of the system (e.g., communication
between agents). This can be specified as a temporal relationship between output of
one agent or component and input of another one. The following transfer requirement
pattern between components A and B expresses this.

Example 10: Transfer requirement between system components

Transfer requirement between components A and B (TR(A, B) informal):
At any point in time
if A generates information for B at its output,
then  some time later B will receive this information on its input.

•

2.4 Requirements for an individual information agent

Temporal relationships between an individual agent’s own input and output define its
behaviour. A typical pattern for an agent A is as follows:

if A receives as input ....
[and in the past as input A received ...
and in the past as output  A generated ... ]

then some time later A generates as output ....

Please note that such behaviour patterns describe requirements which are of a lower
process abstraction level compared to the overall system requirements. For example,
the following requirements can be imposed on individual personal assistant and
information provider agents.

Example 11: Assistant (PA) and provider (IP) agent requirements

Personal assistant agent behaviour requirement (AR1 informal):
At any point in time
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if an incoming scope of interest of a user is received,
then some time later  the PA will communicate an unpersonal scope based on that
user scope to a set of Information Provider agents.

Personal Assistant agent behaviour requirement (AR2 informal):
At any point in time
if  a PA receives new information on its input ,
then some time later for each  user which communicated earlier a scope
matching that information the PA will generate on its output the related scope
result for that user, unless the PA received a corresponding scope retraction from
this user before it received the new information.

Information provider agent behaviour requirement (AR3 informal):
At any point in time
if an incoming scope of interest is received by an IP,
then some time later the IP will generate this scope as output for its environment

Information Provider agent behaviour requirement (AR4 informal):
At any point in time
if an IP receives new information on its input ,
then  some time later for each PA which communicated earlier a scope matching
that information the IP will generate on its output the related scope result for that
PA, unless the IP received a corresponding scope retraction from this PA before
it received the new information.

•

2.5  Requirements for the environment

Assumptions on the environment can be formulated as temporal relationships
between the environment’s input and output, according to the same patterns as for
agents. In our example, it is assumed that the environment of the overall system (the
Web) is partitioned according to different information provider agents each of which
have information about their own (part of the) environment. An example of an
environment requirement is the following.

Example 11: Environment requirements

Environment requirement  (ER1 informal):
At any point in time
if the environment of an Information Provider has received a scope on its input

and now or later information is or becomes newly available in this
environment that matches this scope, and this scope was not retracted before
the new information became available,

then some time later the environment will generate this information as output for
the Information Provider

•
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2.6  Requirements for components within an information agent

It is possible to define more elementary units of behaviour within an agent by refining
some of the overall requirements imposed on the agent. Whether this is desirable or
appears to be too complex to do for an agent certainly depends on whether or not its
requirements are sufficiently elementary to serve as a starting point for a transparent
design. For example, a possible behavioural refinement of the requirements imposed
on personal assistants implies the internall use of user profiles.

Example 12: Personal Assistant agent (PA) component requirements

Component requirement (CR1 informal):
The PA maintains a profile of its users that satisfies the following:
At any point in time

a.  if a user scope is received on PA’s input, then it is added to the profile.
b.  if a scope retraction is received on PA’s input, then the corresponding user

scope is removed from the profile .

Component requirement (CR2 informal):
At any point in time
if the PA receives new information on its input ,
then for each  user profile matching that information the PA will generate on its
output the related scope result for that user

•

3  Specification of Agent and Multiagent System Design Structures

In accordance to the specified requirements of agent behaviour and the environment
in our example domain we can create now a design structure for individual agents and
the multiagent system as a whole. Figure 3 depicts such a design structure. In this
example, the multiagent system consists of two users, one personal assistant, two
information providers, and the Web. An example of a specification language for such
kind of design descriptions is given in DESIRE (cf. [5] for the principles behind
DESIRE, and [3] for a case study). A personal assistant communicates with human
agents (its users) and information provider agents which in turn communicate with
the assistants and interact with their environment.
Based on the requirements on the personal assistant agent as given above we can
make the following design decisions in that we identify at least three sub-components
of the agent:

1. a component to maintain the user profiles (called Maintenance of Agent
Information),

2. a component capable of matching information with scopes (Proposal
Determination, which takes place within Cooperation Management), and

3. a component that handles communication with other agents (called Agent
Interaction Management).
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Fig. 3.  Global multi-agent system design description in DESIRE.

The design description shown in Fig. 4 includes these components. Moreover
components ‘Own Process Control’ and ‘Maintenance of World Information’ are part
of the design for internal coordination and maintenance of a world model,
respectively. The design of the agent is based on a reusable design pattern for the
weak agent notion (cf. [35]), called GAM (Generic Agent Model) (cf. [6]). A more
extensive description of this design pattern can be found in [6]. At the highest
abstraction level within the agent, a number of processes is distinguished (see Fig. 4).

First, we model a process that manages communication with other agents by the
component agent interaction management. This component is supposed to identify
and extract the information from incoming messages. It determines which of the other
internal processes of the agent needs this communicated information and prepares
outgoing communication. Next, the agent needs to maintain (e.g., profile) information
on the other agents with which it co-operates: maintenance of agent information.
The component maintenance of world information is included to store the world
information (e.g., information on attributes of information). The process own process
control defines different characteristics of the agent and determines foci of behaviour.
The component world interaction management within GAM models interaction with
the world: initiating observations, receiving observation results, and execution of
actions in the world. As the PA only communicates and has itself no direct interaction
with the world, this component was left out for the example here.
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Fig. 4.  Internal design description of the Personal Assistant.

The component cooperation management models collaboration with other agents;
in this example it is meant to model the matching between information and scopes.

4  Verification

In general, verification can take place in different forms. For example:
• to verify scenarios against requirements
• to verify requirements on a system or agent against other requirements on the

system or agent
• to verify requirements on a system against requirements of agents included in the

system
• to verify a design structure against requirements
 
 Each of these types of verification will be discussed briefly in subsequent sections.

 4.1  Verification of requirements against scenarios

 Having specified both, requirements and scenarios in a requirements engineering
process provides the possibility of mutual comparison and verification: the
requirements can be verified against the scenarios, and vice versa. By this,
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ambiguities and inconsistencies within and between the existing requirements or
scenarios may be identified, but also missing requirements or scenarios.
 Checking a temporal formula F, which formally represents a requirement, against
a temporal model IT, formally representing a scenario, means that formal verification
of requirements against scenarios can be done by model checking. A formal
representation IT of a scenario SC and a formal representation F of a requirement are
compatible if the temporal formula is valid for the model. As an example, scenario
GS1 can be verified against requirement GR2 to find out that the scenario indeed
fulfills the requirement. It is possible to reformulate and/or refine requirements at the
same (system or agent) level. It can be verified whether the reformulation implies the
original requirement, or that they are even logically equivalent.
 

 

userPAIPuser PA IP env

IR1 IR3IR5IR4IR2

AR1 AR2AR4ER1AR3

TR(user, PA) TR(PA, IP) TR(PA, user)TR(IP, PA)TR(env, IP)TR(IP, env)

Fig. 5. Overview of different relations between requirements

 4.2  Verification of system requirements against other system requirements

 Consider the following example.
 
 Example 13: Verification of system/system requirements
 
 Assume a given transfer requirement TR(PA, user) from PA to user is proven to be
satisfied. Then, requirement GR1 on the system level is implied by the interaction
requirements IR1, IR2, IR3, IR4, and IR5; this yields the following proof pattern (see
Fig. 5, upper part):
 
 (pp1)  IR1 & IR2 & IR3 & IR4 & IR5 & TR(PA, user)  =>  GR1
 •

 4.3  Verification of system requirements against requirements on agents

 Obviously, to prove that overall system requirements are fulfilled we need to prove
the behavioural requirements of the agents involved. In particular, if it can be proven
that the agent requirements are fulfilled, then also the interaction requirements hold.
This requires that the appropriate transfer requirements (for agents communication)
hold. In our example domain we can give the following example.
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 Example 13: Verification of system/agents requirements
 
 Personal Assistant agent requirement AR1 (cf. ex. 11) implies the interaction
requirement IR1 (cf. Example 7) under the condition that the communication
successfulness requirement TR(user, PA) (cf. Example 10) holds. This is expressed
by the following proof pattern:
 
 (pp2)  AR1 => [ TR(user, PA) => IR1 ]
 
 A similar proof pattern shows that the other interaction requirements can be derived
from the agent requirements, assuming communication successfulness:
 
 (pp3) AR3 => [ TR(PA, IP)  => IR2 ]
 ER1 => [ TR(IP, env)  => IR4 ]
 AR4 => [ TR(env, IP)  => IR5 ]
 AR2 => [ TR(IP, PA)  => IR3 ]
 
 In terms of Fig. 3, this can be formulated as ‘the upper steps are implied by the lower
steps’. As a result, the combination of proof patterns (pp3) and (pp1) yields the
following proof pattern:
 
 (pp4) [ TR(user, PA) & TR(PA, IP)  & TR(IP, env)  & TR(env, IP) & TR(IP, PA)

 & AR1 & AR2 & AR3 & AR4 & ER1 ]
      =>  GR1

 •

 4.4 Verification of agent requirements against component requirements

 Within an agent it is possible to determine logical relationships between requirements
of the agent as a whole and requirements on components within the agent. As an
example, both component requirements CR1 and CR2 (cf. Example 12) together
imply the individual agent requirement AR2 (cf. Example 11), assuming the
appropriate transfer requirements within the agent.

 4.5  Verification of requirements specification against design specification

 In the case that no refined requirements for agents or agent components exist, it can
be directly verified that the given requirements are implied by the design description.
This requires a (standard) embedding of the information involved in a design
specification in the specification language for behavioural properties.
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 4.6  Compositional verification as a verification method

 A refinement of a behavioural requirement during a design process defines
requirements on more elementary units of behaviour. According to this, starting with
behavioural requirements of the entire system, it can be decided about what kind of
agents to use in the system, and in particular, which individual agent is meant to show
which type of behaviour. In a next step, for each of the agents it can be decided
whether it is desirable to further refine its requirements depending on whether or not
they are elementary enough to serve as a starting point for a transparent design of the
agent itself. This, in turn, can lead to the identification of requirements on more
elementary units of behaviour within the agent and, in relation to this, to different
components within the agent to perform this behaviour. This iterative requirements
refinement process may yield an arbitrary number of high to lower process
abstraction levels within the system and agents (see Fig. 6). Sets of requirements at a
lower level can be chosen in such a way that they realise a higher level requirement,
in the following sense:
 
 given the process composition relation defined in the design description,
 if the chosen refinements of a given requirement are satisfied,
 then also the original requirement is satisfied.
 
This defines the logical aspect of a behavioural refinement relation between
requirements. Based on this logical relation, refinement relationships can also be used
to verify requirements: e.g., if the chosen refinements of a given requirement all hold
for a given system description, then this requirement can be proven to hold for that
system description. Similarly, scenarios can be refined to lower process abstraction
levels by adding the interactions between the sub-processes. At each level of
abstraction, requirements and scenarios employ the terminology defined in the
ontology for that level. The methodological approach to the creation of different
process abstraction levels in relation to requirements refinement has a natural
connection to the process of compositional verification (cf. [23]).
 
 

 highest process abstraction level:
 required behavioural properties of entire system

 

 /  |  \
 

 next process abstraction level:
 behavioural properties of agents

 

 /  |  \         /  |  \         /  |  \
 

  next process abstraction level:
 behavioural properties of components within agents

 
 

 /  |  \        /  |  \         /  |  \        /  |  \         /  |  \
 .
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 (and so on)
 .

 Fig. 6.  Behavioural properties at different process abstraction levels

 The purpose of verification is to prove that, under a certain set of assumptions, a
system will adhere to a certain set of properties, expressed as requirements and
scenarios. In order to prove that a system is behaving as required, not only a complete
specification of the system is necessary, but also the set of requirements and scenarios
to verify the system against. If this set is not available, the verification process is
hampered to a great extent, because formulating sufficiently precise requirements
(and scenarios) for an existing system is nontrivial. For the purpose of verification it
has turned out useful to exploit compositionality.
 Compositional verification as described in [23] takes the compositional structure
of the system into account. The requirements and scenarios are formulated formally
in terms of temporal semantics. During the verification process the requirements and
scenarios of the system as a whole can be derived from properties of agents (one
process abstraction level lower) and these agent properties, in turn, can be derived
from properties of the agent components (again one abstraction level lower), and so
on (see Fig. 6).
 Primitive components (those components that are not composed of others) can be
verified using more traditional verification methods making use of the design
description only. Verification of a (composed) component at a given process
abstraction level is done using:
 
 
• properties of the sub-components it embeds
• a specification of the process composition relation
• environmental properties of the component (depending on the rest of the system,

including the world).

This exploits the compositionality in the verification process. Given a set of
environmental properties, the proof that a certain component adheres to a set of
behavioural properties depends on the (assumed) properties of its sub-components,
and the composition relation: properties of the interactions between those sub-
components, and the manner in which they are controlled. The assumptions under
which the component functions properly, are the properties to be proven for its sub-
components. This implies that properties at different levels of process abstraction
play their own role in the verification process. A condition to apply a compositional
verification method is the availability of an explicit specification of how the system
description at an abstraction level is composed from the descriptions at the adjacent
lower abstraction level.

Compositionality in verification reduces the search space for the properties to be
identified, and the proofs, and supports reuse of agents and components. Complexity
in a compositional verification process is two-fold: both the identification of the
appropriate properties at different levels of abstraction and finding proofs for these
properties can be complex. If the properties already are identified as part of the
requirements engineering process, this means that the complexity of part of the
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verification process is reduced: ‘only’ the complexity of finding the proofs remains.
Our experience in a number of case studies is that having the right properties reduces
much more than half of the work for verification: due to the compositionality, at each
process abstraction level the search space for the proofs is relatively small.
If no explicit requirements engineering has been performed, finding these properties
for the different process abstraction levels can be very hard indeed, as even for a
given process abstraction level the search space for possible behavioural requirement
formulations can be nontrivial. If as part of the design process requirements have
been (formally) specified as well at different levels of process abstraction, these can
be used as a useful starting point for a verification process; they provide a detailed
map for the verification process and thus reduce the complexity by eliminating the
search space for the requirement formulations at different process abstraction levels.

Integration of the requirements engineering process within the system design
process leads to system designs that are more appropriate for verification than
arbitrary architectures. Moreover, reuse is supported; for example, replacing one
component by another is possible without violating the overall requirements and
scenarios, as long as the new component satisfies the same requirements and
scenarios as the replaced component. Note that the idea of refinement is well-known
in the area of (sequential) programs, e.g., [12]. The method of compositional
requirements specification proposed here exploits a similar idea in the context of
behavioural requirements.

5  Discussion

Effective development of nontrivial systems of collaborative information agents
requires an in-depth analysis resulting in  (1) specification of requirements at
different levels of the system, (2) specification of design structures, and (3) a
systematic verification. To support a widespread use of intelligent information agents
for the Internet, the challenges are (1) to identify and classify a variety of instances of
the different types of reusable (requirement, design and proof) patterns, (2) build
libraries of them, and (3) provide corresponding easy-to-use plug-in information
agent components to the common user. In this paper we have informally shown by
the use of a simplified example, which types of reusable requirements patterns,
design patterns, and proof patterns can be exploited, and how these patterns relate to
each other.

In particular, it is proposed that two specification languages are used: a language
to specify design descriptions such as DESIRE, and a language to specify
(behavioural) requirements and scenarios such as TRL (cf. section 2.1). Each of these
languages has its own chacteristics to fulfill its purpose. The distinction is similar to
the one made in the AI and Design community [20], namely to distinguish between
the structure of a design object on the one hand, and function or behaviour on the
other hand. For both languages informal, semi-formal and formal variants have to be
available to support the step from informal to formal, and, for example, to support a
communication with stakeholders.

As said above, a formal specification language of the first type, and a semi-formal
and graphical variant of this language, is already available in the compositional multi-
agent system development method DESIRE, and is supported by the DESIRE software
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environment. A number of generic models or design patterens for agents are
available; for example for weak agents [6], for cooperative agents able to work in
projects [2], and BDI-agents [4]. However, this language  focuses on design
structures and was never meant to specify requirements or scenarios; a language to
specify a (multi-agent) system architecture at a conceptual design level needs features
different from a language to express properties of a system. In current research,
further integration of the approach to requirements engineering is addressed.

Another main challenge in the design of (collaborative) information agents is the
thoughtful design and deployment of standardized plug-in information agent
components to the community. This would enable the common user of the Internet to
build its own intelligent information agent thereby treating the Web as a common
public good, in contrast to the current practice of searchbots and associated ranking
warfare. The examples included in this paper are meant to serve only as a starting
point for a more systematic exploration of this vision of composite plug-in
information agents. We will continue research and development in this direction.
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